Kvantitative metoder 2: Den multiple regressionsmodel1 Kvantitative metoder 2 Den multiple regressionsmodel 5. marts 2007.

Slides:



Advertisements
Lignende præsentationer
Inferens i den lineære regressionsmodel 19. marts 2007
Advertisements

Dummyvariabler 13. oktober 2006
KM2: F221 Kvantitative metoder 2 Specifikation og dataproblemer 2. maj 2007.
Økonometri 1: Inferens i den lineære regressionsmodel1 Økonometri 1 FunktioneI form i den lineære regressionsmodel 19. oktober 2004.
Økonometri 1: Specifikation og dataproblemer1 Økonometri 1 Specifikation, og dataproblemer 4. november 2005.
KM2: F171 Kvantitative metoder 2 Dummyvariabler 2. april 2007.
Økonometri 1: Instrumentvariabelestimation1 Økonometri 1 Instrumentvariabelestimation 26. november 2004.
Økonometri 1 Mere om dataproblemer Gentagne tværsnit og panel data I.
Økonometri 1: Dummy variable
Økonometri 1: F3 Økonometri 1 Den simple regressionsmodel 15. september 2006.
Økonometri 1: Specifikation og dataproblemer1 Økonometri 1 Specifikation, og dataproblemer 7. april 2003.
Kvantitative metoder 2: Inferens i den lineære regressionsmodel1 Kvantitative metoder 2 Inferens i den lineære regressionsmodel 12. marts 2007.
Økonometri 1: F121 Økonometri 1 Heteroskedasticitet 27. oktober 2006.
Økonometri 1: Inferens i den lineære regressionsmodel1 Økonometri 1 Inferens i den lineære regressionsmodel 1. oktober 2004.
Økonometri 1: Den multiple regressionsmodel1 Økonometri 1 Den multiple regressionsmodel 21. september 2004.
Økonometri 1: F81 Økonometri 1 Inferens i den lineære regressionsmodel 2. oktober 2006.
Økonometri 1: Instrumentvariabelestimation1 Økonometri 1 Instrumentvariabelestimation II 7. december 2005.
Økonometri 1: Specifikation og dataproblemer1 Økonometri 1 Specifikation, og dataproblemer 9. november 2004.
Økonometri – lektion 5 Multipel Lineær Regression
Økonometri 1: F91 Økonometri 1 Prediktion. Dummyvariabler 9. oktober 2006.
KM2: F151 Kvantitative metoder 2 Funktionel form. Goodness-of-fit. Prediktioner og residualer 26. marts 2007.
Heteroskedasticitet 17. marts 2006
Økonometri 1: Heteroskedasticitet1 Økonometri 1 Heteroskedasticitet 22. marts 2006.
KM2: F191 Kvantitative metoder 2 Heteroskedasticitet 16. april 2007.
Økonometri 1: Specifikation og dataproblemer1 Økonometri 1 Specifikation og dataproblemer 2. november 2004.
Økonometri 1: Inferens i den lineære regressionsmodel1 Økonometri 1 Inferens i den lineære regressionsmodel 5. oktober 2004.
Økonometri 1: Inferens i den lineære regressionsmodel1 Økonometri 1 Inferens i den lineære regressionsmodel 3. marts 2006.
Økonometri – lektion 8 Multipel Lineær Regression
Økonometri 1: Dummy variable1 Økonometri 1 Dummy variable 24. marts 2003.
Økonometri 1: Specifikation og dataproblemer1 Økonometri 1 Heteroskedaticitet (Specifikation og dataproblemer) 2. november 2005.
Økonometri 1: Specifikation og dataproblemer1 Økonometri 1 Specifikation og dataproblemer 29. marts 2006.
Økonometri – lektion 4 Multipel Lineær Regression Model Estimation Inferens.
Økonometri 1: Inferens i den multiple regressionsmodel1 Økonometri 1 Inferens i den multiple regressionsmodel 3. marts 2003.
KM2: F61 Kvantitative metoder 2 Den simple regressionsmodel 21. februar 2007.
Kvantitative metoder 2: Inferens i den lineære regressionsmodel1 Kvantitative metoder 2 Inferens i den lineære regressionsmodel 14. marts 2007.
Kvantitative metoder 2: Den multiple regressionsmodel1 Kvantitative metoder 2 Den multiple regressionsmodel 26. februar 2007.
Økonometri 1: Inferens i den multiple regressionsmodel1 Økonometri 1 Inferens i den multiple regressionsmodel 10. marts 2003.
Økonometri 1: Den simple regressionsmodel Økonometri 1 Den simple regressionsmodel 14. september 2004.
Økonometri 1: F151 Økonometri 1 Specifikation og dataproblemer 10. november 2006.
Økonometri 1: Den multiple regressionsmodel1 Økonometri 1 Den multiple regressionsmodel 24. februar 2003.
Økonometri 1: Inferens i den lineære regressionsmodel1 Økonometri 1 Kvalitative variable 8. marts 2006.
Økonometri 1: Flere emner i den multiple regressionsmodel1 Økonometri 1 Flere emner i den multiple regressionsmodel 13. marts 2003.
KM2: F181 Kvantitative metoder 2 Heteroskedasticitet 11. april 2007.
Økonometri 1: F41 Økonometri 1 Den multiple regressionsmodel 18. september 2006.
KM2: F51 Kvantitative metoder 2 Den simple regressionsmodel 19. februar 2007.
Økonometri 1: F51 Økonometri 1 Den multiple regressionsmodel 22. september 2006.
Økonometri 1: Heteroskedasticitet1 Økonometri 1 Heteroskedasticitet 26. oktober 2004.
KM2: F201 Kvantitative metoder 2 Heteroskedasticitet 18. april 2007.
Økonometri 1: Den multiple regressionsmodel1 Økonometri 1 Den multiple regressionsmodel 15. februar 2006.
Økonometri 1: Dummyvariabler1 Økonometri 1 Dummyvariabler 21. oktober 2004.
Økonometri 1: Den simple regressionsmodel Økonometri 1 Den simple regressionsmodel 13. februar 2003.
Økonometri 1: Heteroskedasticitet1 Økonometri 1 Heteroskedasticitet 31. marts 2003.
Økonometri 1: Den simple regressionsmodel Økonometri 1 Den simple regressionsmodel 7. september 2004.
Kvantitative metoder 2: Den multiple regressionsmodel1 Kvantitative metoder 2 Den multiple regressionsmodel 28. februar 2007.
Økonometri 1: Inferens i den lineære regressionsmodel1 Økonometri 1 FunktioneI form i den lineære regressionsmodel 11. oktober 2005.
Økonometri 1: F2 Økonometri 1 Den simple regressionsmodel 11. september 2006.
Økonometri 1: F141 Økonometri 1 Specifikation og dataproblemer 6. november 2006.
Økonometri 1: Dummyvariabler1 Økonometri 1 Dummyvariabler 12. oktober 2005.
Økonometri 1: Den simple regressionsmodel Økonometri 1 Den simple regressionsmodel 14. september 2005.
Økonometri 1: Heteroskedasticitet1 Økonometri 1 Heteroskedasticitet 24. marts 2006.
Økonometri 1: Dummyvariabler1 Økonometri 1 Dummyvariabler 15. marts 2006.
Økonometri 1: Heteroskedasticitet1 Økonometri 1 Heteroskedasticitet 27. marts 2003.
Økonometri 1: Den multiple regressionsmodel1 Økonometri 1 Den multiple regressionsmodel 17. september 2004.
Økonometri 1: Heteroskedasticitet1 Økonometri 1 Heteroskedasticitet 29. oktober 2004.
Økonometri 1: F71 Økonometri 1 Inferens i den lineære regressionsmodel 29. september 2006.
KM2: F41 Kvantitative metoder 2 Den simple regressionsmodel 14. februar 2007.
Økonometri 1: F131 Økonometri 1 Heteroskedasticitet 30. oktober 2006.
KM2: F211 Kvantitative metoder 2 Specifikation og dataproblemer 30. april 2007.
Den multiple regressionsmodel 21. september 2005
Heteroskedasticitet 25. oktober 2005
Præsentationens transcript:

Kvantitative metoder 2: Den multiple regressionsmodel1 Kvantitative metoder 2 Den multiple regressionsmodel 5. marts 2007

Kvantitative metoder 2: Den multiple regressionsmodel 2 Dagens program Emnet for denne forelæsning er stadig den multiple regressionsmodel (Wooldridge kap , E.2) Variansen på OLS estimatoren Multikollinaritet Variansen i misspecificerede modeller Estimator for variansen på fejlleddet Gauss-Markov teoremet

Kvantitative metoder 2: Den multiple regressionsmodel 3 Variansen på OLS estimatoren Antagelserne MLR 1-MLR 5 kaldes Gauss-Markov antagelserne Teorem 3.2 Under antagelserne MLR 1-MLR 5 er variansen af OLS estimatoren givet ved X er en nx(k+1) matrix Parameteren β er en (k+1)x1 matrix (vektor)

Kvantitative metoder 2: Den multiple regressionsmodel 4 Variansen af OLS estimatoren (fortsat) Matrixformen for variansen er som regel lettest at arbejde med Til at fortolke variansen kan det være lettere at benytte følgende opskrivning af variansen hvor og R j 2 stammer fra regressionen af x j på de øvrige forklarende variable Bevis for ovenstående opskrivning af variansen se appendix i kap. 3

Kvantitative metoder 2: Den multiple regressionsmodel 5 Variansen.. (fortsat) De tre komponenter i variansen Variansen af fejlleddet:  Jo større varians på fejlleddet jo større varians på alle estimatorerne Variationen i x j  Jo større variation i x j jo mindre varians på estimatoren for β j Variation R 2 j  Jo tættere R 2 j er på 0 jo mindre er variansen på estimatoren for β j  Mindst varians opnås ved R 2 j =0 hvilket svarer til at x j er ukorreleret med de øvrige forklarende variable  Jo tættere R 2 j er på 1 jo større er variansen på estimatoren for β j  Hvis antagelsen MLR 4 er opfyldt er R 2 j altid forskellig fra 1

Kvantitative metoder 2: Den multiple regressionsmodel 6 Multikollinaritet Multikollinaritet optræder, når R j 2 er tæt på 1 Følgerne af multikollinaritet:  Variansen på estimatoren β j vil være stor (se figur 3.1) Hvornår optræder multikollinarietet:  Når nogle af de forklarende variable er højt korreleret  Når der er få observationer

Kvantitative metoder 2: Den multiple regressionsmodel 7 Multikollinariet (fortsat) Er det et problem, at der er multikollinaritet?  Det afhænger af hvor stor variansen på estimatorerne bliver  Det afhænger af hvad analysen skal bruges til  Høj korrelation mellem nogle af de forklarende variable betyder ikke så meget, hvis det ikke er estimaterne til disse parametre, man primært er interesseret i Hvad stiller man op med multikollinaritet  Indsaml mere data  Drop en eller flere variable fra modellen. Dette er dog langt fra altid en god ide (problemer med udeladte variable)

Kvantitative metoder 2: Den multiple regressionsmodel 8 Variansen i misspecificerede modeller Variansen i misspecificerede modeller illustreres ved et eksempel Antag følgende model opfylder Gauss-Markov antagelserne: Vi har to estimatorer af β 1:  OLS estimatoren fra MLR:  OLS estimatoren fra SLR: Variansen:

Kvantitative metoder 2: Den multiple regressionsmodel 9 Variansen i misspecificerede modeller (fortsat) Den betingede varians af er altid mindre end (eller lig med) variansen af Hvis x 1 og x 2 er ukorreleret er variansen den samme og begge estimatorer middelrette Hvis β 2 =0 er begge estimatorer middelrette og har mindst varians. Altså foretrækkes Hvis β 2 ╪0 er middelret mens er biased. Variansen af er mindst. Det er ikke oplagt hvilken estimator som foretrækkes.

Kvantitative metoder 2: Den multiple regressionsmodel 10 Estimatet på variansen af fejlleddet Estimatoren på variansen på fejlleddet udregnes stort set som i den simple regressionsmodel Ud fra OLS estimaterne kan residualerne beregnes: Estimatet beregnes til: Nævneren er bestemt til at være antallet af frihedsgrader  (antal obs.) – (antal estimerede parametre)

Kvantitative metoder 2: Den multiple regressionsmodel 11 Estimatet af variansen på fejlleddet (fortsat) Teorem 3.3  Hvis Gauss-Markov antagelserne (MLR 1- MLR 5) er opfyldt, er estimatoren for variansen af fejlleddet middelret:

Kvantitative metoder 2: Den multiple regressionsmodel 12 Gauss-Markov teoremet Hvis Gauss-Markov antagelserne er opfyldt, kan man vise, at OLS estimatoren er den estimator, som har den mindste varians blandt lineære middelrette estimatorer Hvorfor er det at vigtigt at bruge en estimator med mindst mulig varians? OLS kaldes også BLUE for  Best – (mindst varians)  Linear  Unbiased  Estimator

Kvantitative metoder 2: Den multiple regressionsmodel 13 Gauss-Markov teoremet Teorem 3.4 Under Gauss-Markov antagelserne (MLR 1- MLR 5) gælder der, at OLS estimatorerne for β 0, β 1,β 2,…,β k er BLUE Bevis (se appendix E.2) (tavlegennemgang)

Kvantitative metoder 2: Den multiple regressionsmodel 14 Næste gang Wooldridge kap note om Monte Carlo simulationer på hjemmesiden for forelæsningerne