Præsentation er lastning. Vent venligst

Præsentation er lastning. Vent venligst

En biokemisk karakterisering af et hvilket som helst protein kræver at vi har noget rimeligt rent, oprenset aktivt protein. Oprensning kræver vi har et.

Lignende præsentationer


Præsentationer af emnet: "En biokemisk karakterisering af et hvilket som helst protein kræver at vi har noget rimeligt rent, oprenset aktivt protein. Oprensning kræver vi har et."— Præsentationens transcript:

1 En biokemisk karakterisering af et hvilket som helst protein kræver at vi har noget rimeligt rent, oprenset aktivt protein. Oprensning kræver vi har et assay for at kunne følge aktiviteten under oprensingen For enzymaktiviteter, der kræver flere proteiner, er det generelt vigtigt, at kunne oprense de enkelte komponenter i en ren form og rekonstituere systemet

2 Sammensætning af holoenzym og coreenzym
ion bytter kromatografi adskiller s fra de øvrige komponenter

3 Transkriptionsaktivitet af holo- og coreenzym

4 Typer af virale gener

5 Eksperimentelle grundlag for holoenzymets specificitet

6 Promiskøs transkription
mærket in vitro fremstillet RNA kompetition med forskellige gener Specifik transkription mærket in vitro fremstillet RNA kompetiton med forskellige gener

7 Kun specifik transkription af holoenzymet vises ved RNase protection
Core enzymet transkriberer begge strenge promiskøst

8 Holoenzymet binder hårdt til promotorer i modsætning til coreenzymet
Tidsskale for udbytning af radioaktiv promotorsekvens med den samme kolde sekvens

9 reverse

10 DNA smeltning fremmer binding af holoenzymet
tyder på at denaturering fremmer binding af holoenzymet

11 Promotor genkendelse og aktivering

12 Promotor struktur bioinformatisk analyse mutationsanalyse

13 Stærke promotorer indeholder UP elementer samt
-10 og -35 sekvenser

14 Abortiv initiering 1, - DNA 2, +[32P]-a ATP
RNA polymerasen prøver flere gange, mens den bliver siddende på DNAet 1, - DNA 2, +[32P]-a ATP 3, +[32P]-a ATP + 25mM CTP, GTP, UTP 4, +[32P]-a ATP + 50mM CTP, GTP, UTP 5, +[32P]-a ATP + 100mM CTP, GTP, UTP 6, +[32P]-a ATP + 200mM CTP, GTP, UTP 7, +[32P]-a ATP + 400mM CTP, GTP, UTP

15 Overordnet billede af transkriptionsinitiering

16 Rifampicin forsøg viser at initieringsfrekvensen øges
stimulerer elongering eller initiering ? Rifampicin inhiberer initiering af transkription i prokaryoter Rifampicin forsøg viser at initieringsfrekvensen øges

17 s kan genbruges Lav ionstyrke forhindrer terminering rifampicin + core
nye core fra rifamipicin resistent stamme

18 Oprindelig model for genbrug af s

19 Princippet i FRET

20 Fluorescent resonanse energy transfer
Bruges til at bestemme om to molekyler er tæt på hinanden eller bevæger sig mod/bort fra hinanden.

21 Resultatet af FRET analyse på s og DNA
Ikke alle s-faktorer forlader RNA polymerasen

22 Sammensætning af RNA polymerasen under elongering
Pause ved +32 Oprensning v.h.a. Beads med komplementær oligo nuklease behandling og SDS PAGE

23 Smeltning af dobbelstrenget DNA giver en stigning i absorbancen ved 260 nM (hyperkromisk skift)
Hybridisering af to enkeltstrengede DNA molekyler giver et fald i absorbancen ved 260 nM (hyopokromisk skift) Ændringen i absorbancen er et mål for hvor mange hydrogenbindinger der dannes/brydes. På en DNA template med RNA polymerase giver en sådan analyse ca. 10 baser separares.

24

25 Udstrækning af enkeltstrenget DNA i promotoren

26

27 Konserverede regioner i s-faktorer

28

29

30 Competition forsøg med filter bindings assay
GST-fusioner kan bruges til at bestemme hvilke områder af s der binder -10 eller -30 regionerne Competition forsøg med filter bindings assay Competition i fravær af enten -10 eller -35 Competition uden både -10 og -35

31 Crosslinking kan bruges til at vise hvilke regioner af b’ der er vigtig for binding af s til promotoren (-10 regionen)

32 In vitro transkription med vildtype og muterede a-dele af RNA polymerase holoenzym
SUB, UP elementet substitueret med en tilfældig sekvens -41, mangler UP elementet RNA1 fra vektoren

33 Foot-printing kan buges til at vise, hvor et protein binder DNA
a, template streng b, non-template streng a2, a-subunit dimer RNAP, holoenzyme

34 (f.eks. hvilke subunits har betydning for antibiotike resistens)
Rekonstitueering fra rene komponenter kan give information om molekylære reaktionsmekanismer (f.eks. hvilke subunits har betydning for antibiotike resistens) Fraktionering af core-enzymet

35 b-sununit vigtig for både rifampicin og streptoglydin resistens
Rifampicin hæmmer initiering Streptoglydin hæmmer elongering

36 Affinitetsmærkning kan bruges til at identificere det aktive site i et enzym
Ved at reagere RNA polymerasen med umærket affinitetslabel og mærket nukleotid sikres at mærkningen sker i det aktive site i RNA polymerasen

37 b er en del af det aktive site for dannelse af fosfordiester bindinger

38 Indkorporering af 6-10 histidiner kan bruges til affinitets-
oprensning af proteiner og til at immobilisere dem og manipulere med substratet. En enkelt strenget sekundær template virker ved lav ionstyrke Mindst 9 bp dobbelstrenget DNA kræves for salt resistent binding mellem position +2 og + 11

39

40 Crosslinking via iodo-deoxyuridin holding sekundær template

41 Crosslinking mellem DNA og RNA kan bruges til af vise hvor lang DNA-RNA hybriden er under elongering

42 Crosslinking til at bestemme udstrækningen af RNA-DNA hybrider under elongering
Indkorporering af reaktiv uridin base i RNAet på en bestemt position. Dernæst tillade RNA polymerasen at polymerisere til en defineret position fra den reaktive uridin. dernæst aktivere krydsbinding.

43 Transkription påvirker supercoiling af DNAet

44 In vitro ssystem for at bestemme kravene til transkriptions terminator

45 Model for terminering

46 Magnetiske beads kan bruges til at separere reaktionsprodukter
Template koblet til magnetiske beads Frigives RNAet, som tegn på terminering, ender det i supernatanen, ellers i pellet Dobbeltstrenget RNA vigtig for terminering

47 g-fosfatet indkorporeres kun i den første nukleotid
3H-mærket UTP indkorporeres i alle polymeriserede nukleotider

48 Ultracentrifugering eller elektroforese kan bruges til at adskille RNA efter størrelse
Forskellei størrelse mellem RNA lavet i fravær/tilstedeværelse af rho

49 Sedimentation af RNA lavet i fravær af rho eller i tilstedeværelse
rho frigiver RNAet fra DNAet

50 Model af rho afhængig terminering


Download ppt "En biokemisk karakterisering af et hvilket som helst protein kræver at vi har noget rimeligt rent, oprenset aktivt protein. Oprensning kræver vi har et."

Lignende præsentationer


Annoncer fra Google